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Abstract —The paper discusses a uew algorithm for the noise analysis of

a linear multiport network. The circuit may include any kind of passive

components introducing thermal noise only, and any number of two-port

devices described by the usuaf four noise parameters. On output, the

algorithm produces the correlation matrix of the Norton equivalent noise

current sources at the network ports. The approach is suitable for imple-

mentation into any general-purpose microwave circuit design program.

I. INTRODUCTION

I N THIS PAPER, the problem of evaluating the noise

properties of a general linear multiport network is tackled
from a computer-aided design viewpoint. This means that

the formulation of the problem is typical of a general-pur-

pose CAD environment, i.e., the network may be defined

component-wise in an arbitrary way, and may include any

kind of lossy passive (possibly nonreciprocal) comporlents,

as well as any number of active two-port devices. Passive

components are described by geometrical and technologi-

cal data, and are assumed to introduce thermal noise only.

For each active device, the starting-point information is

represented by the usual four spot noise parameters [1] and

by the admittance (or any equivalent) matrix; such data is

assumed to be available from measurements artd/or physi-

cal circuit models. The purpose of our work is to introduce

a computer algorithm allowing a straightforward calcula-

tion of the noise properties of the overall network, regard-

less of its topology.

In the general multiport case, a possible approach (actu-

ally the one to be developed here) is to represent the noisy

network by its Norton equivalent, that is, by its noiseless

counterpart with a noise current source connected across

each port. This situation is schematically represented in

Fig. 1. Quite obviously, such sources are not statistically

independent of each other, so that a complete analysis

must include the computation of their correlation matrix.

As a typical application, this information may be required

to determine the noise behavior of a nonlinear circuit

embedding the linear multiport under consideration, such

as a microwave front-end including a multiple-diode mixer

[2]. In the special but important two-port case, the usual
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description in terms of spot noise parameters can be ob-

tained from the correlation matrix by means of expli~it

algebraic expressions. This ultimately leads to the knowl-

edge of the noise figure once the source admittance has

been specified.

The noise analysis of microwave circuits of complex

topology has received some attention in the technical litera-

ture. Formulas for evaluating the noise parameters c}f a

combination of two-ports (one of which noiseless) have

been available for a while (e.g., [3]). More recently, expres-

sions for the noise figure of some popular configurations? ,

such as the feedback and the distributed” arrt@jfi&,. have

been presented [4]-[6}. These approaches aie:far .fr&n

providing a complete solution to the CAD problem be-

cause of their limiting assumptions and/or their spe-

cialized computational schemes that are only applicable to

preselected topologies. On the contrary, the method pro-

posed in this paper is completely general and can readily

be implemented into any general-purpose circuit design

program.

IL BASIC RELATIONSHIPS FOR A “NoIsY TWO-PORT

The classic equivalent representation of a linear noisy

two-port [1] is given in Fig. 2(a). For spot noise calcu-

lations, E and J are complex phasors and have the mean-

ing of spectral (pseudo-sinusoidal) components of the

corresponding noise voltage and current at a given fre-

quency f. .
When the two-port is driven by a sinusoidal source of

internal admittance Y~ = Gs + jBs, its noise figure has the

well-known expression

RN
F= Ftin+~lYs-Yo[2

s
(1)

where F~in is the minimum noise figure, Y. = Go + @’. is
the optimum source admittance, RN is the equivalent noise

resistance of the voltage source E. Ftin, Go, Bo, and R ~

are the four spot noise parameters of the linear two-port at

the frequency of interest.

In general, E and J are not statistically independent; if
we denote by Jco, that component of J which is completely”

correlated with E, we may let

Jcor = YcorE (2)
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Fig. 1. Norton’s equivalent circuit of a noisy linear multiport.

defining the correlation admittance

From [1], we obtain

Fmin – 1
Gcor= ~R -Go

N

Bcor = – B.

Ycor= Gcor + jl?cor.

GN+iN(G~– G~or) (3)

where G~ is the equivalent noise conductance of J – Jcor.

Thus, by definition

where

K~

Ff
f)

(lEl’) = 4K,ToRNAf

(IJ12) = 4K~To(lYcor12RN+ GN)A~

(EJ*) = Y&{lE12) (4)

Boltzmann’s constant,

reference absolute temperature,

noise bandwidth,

statistical (ensemble) average,

complex conjugate.

For the present purposes, it is more convenient to make

use of the Norton equivalent circuit of the noisy two-port

shown in Fig. 2(b). If we denote by yP~ (p, q = 1, 2), the

elements of the admittance matrix at frequency f, by

inspection of Fig. 1, we get

J1 = J – yllE

Jz = - yzlE. (5)

The correlation matrix of the noise current sources Jl, Jz is
defined as

‘J= [( JpJqV]= 4KBToAfcJ (p, q=l,2). (6)

Combining (5) with (4) yields the normalized correlation

matrix C’ as a function of the admittance and noise

parameters

[

~ = GN + lyll – YC0,12RN y;(y~~ – YCO,)RN
J

y,,(y,l - YCO,)*RN 1IYJ112RN “

(7)

.Conversely, the correlation matrix can be used to derive

the four noise parameters. A straightforward manipulation

*
e

(a)

J1@ I
noiseless

two - oort I4 J2

(b)

Fig. 2. Classic equivalent representations of a linear fioisy two-port.

of (7) yields

1
.RN=—.

(1J212)

ly2112 4K~ToAf

(J1J2*)
:Y& = Gco, + jBco, = yll – yzl —

(IJ212)

,G = (IJ112) (JIJ:) (J~J2)
—— .

N 4KBToAf (IJ212) 4K,ToAf ’
(8)

Then from (3)

B.= – Bco,

/

GN i- RNG:or
Go=

RN

~in=l+2RN(Go +Gcor).F (9)

Note that, from (1) by means of (9) and (8) after some

algebraic rnanipulations, we obtain

4KBToG~Af (F – 1)

=(1J112)+ y’;: ‘s 2( IJ212)

–2Re

[

Yll + y..

I
~’1 (J~J2) . (lo)

According to (10), given a source admittance Y~, F – 1 can

be expressed as a homogeneous linear function of the

elements of the correlation matrix (6), as it was easily

predictable from a physical viewpoint. Equation (10) can

also be obtained direcly from the equivalent circuit of Fig.
2(b) by applying the definition of noise figure.

III. ANALYSIS OF A GENERAL NoIsY MULTIPORT

We consider a linear noisy n-port consisting of a Iossy

passive network embedding a number (namely m) of noisy

two-port devices. Each device is assumed to be char-

acterized b)y its admittance matrix and its four spot noise

parameters at each frequency of interest. As shown in Fig.

3, the given network may be represented as the intercon-

nection of a passive (2m + n )-port with the m two-port

devices. In the following, the (2m + n)-port will be referred

to as the passive network. This network may result from an
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Fig. 3. General dec~mposition of a network embedding a number of
noisy two-port devices.

arbitrary interconnection of the usual passive microwave

components and may be nonreciprocal, provided that its

only noise contribution be represented by the thermal

noise sources associated wjth ohmic losses.

To derive the equi?hlent circuit of Fig. 1, we first replace

each noisy network. appearing in Fig. 3 by its Norton

counterpart,’ thus generating the configuration shown in

Fig. 4.

In this figure, two independent sets of noise current

sources show up. The N-sources are the equivalent noise

generators of the passive network and are thermal in

nature; they are not statistically independent, and their

correlation matrix has the expression [7]

~N = [(~p~;)]

= 2K~TOA~(Y+ Y*) (P, q= L2,””.,2m+n)

(11)

where Y is the (2m + n) x (2nt -t n) admittance matrix of

the passive network, and * applied to a complex matrix

indicates the conjugate tr~sposed.

The J-sources are the equivalent noise generators of the

two-port devices and are usually not only thermal. Obvi-

ously, only the couples of sources associated with the same

device, namely J2~_ ~, Jzk for the kth, are correlated, and

their normalized correlation matrix C~~ has the expression

(7).
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Fig. 4. Norton’s equivalent representation of the network depicted in
Fig. 3.

Now let the admittance matrix be partitioned as follows:

[+1Y Yde
l’= ‘d

Y Yeeed
(12)

where the subscript d refers to the 2 m device ports, and

the subscript e to the n external ports (Fig. 3). Accord-

ingly, the network equations take the form (Fig, 4).

{

Id= YddVd + Ydev, + Nd

~,= Yedvd + Y,=V, + N, (13)

Id=–y Vd– J

where y is the diagonal sum of the device admittance

matrices and the vectors of noise current phasors have

been partitioned in a way similar to (12).

The equivalent circuit of Fig. 1 maybe derived by short

circuiting the external ports (V, = O), in which case 1, = II

(Fig. 1). Then from (13)

{

– yvd - J= Yddvd + Nd

S = Y,dVd + N,.
(14)

The solution of (14) ~an be written in the form

S = H~N+ H~J (15)

where

(16)
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and

[1N=;.
e

(17)

In (16), we denote by In the identity matrix of order n.

Since the N and J sources are statistically independent,

the effects of the two terms on the right-hand side of (15)

may be superimposed in power. Thus, the correlation ma-

trix is given by

(SS”) = H.(NN*)H; + H,{ JJ*)H; (18)

or, from (11) and (6)

(SS*) = 2K&A~ [H.(Y+ Y*)H; +2H,C~H.*]

(19)

where C~ is the diagonal sum of the normalized correlation

EKttriCW cJk Of the tWO-POrt devices.

Note that (19) provides separate explicit expressions for

the two contributions to the correlation matrix, that is, the

thermal noise of the passive network and the noise injected

by the active devices. In the special case of a two-port

(n= 2), the same conclusion automatically applies to the

noise figure thanks to (10), once a source admittance has

been specified. Furthermore, in the two-port case, (8) and

(9) can be used to derive from (19) the four spot noise

parameters in a straightforward way.

As a final point, we observe that the

of the overall n-port network of Fig. 1

the form

YL = Y==+ HJYde

admittance matrix

may be written in

(20)

and can be obtained with a negligible increase of computa-

tional effort once Y and H~ have been found. Thus, a

conventional analysis of the circuit may be carried out as a

by-product of the noise calculations. This allows a network

of absolutely general topology to be simultaneously opti-

mized with respect to both the noise properties and any of

the conventional network functions.

IV. APPLICATIONS

The algorithm described in the previous sections was

implemented into a general-purpose microwave CAD pro-

gram based on the subnetworlc-growth method (SGM) of

circuit analysis [8]. When the noise analysis is requested by

the user at the data entry level, a preliminary section of the

program, running only once for a given analysis or design,

generates the passive network of Fig. 3 by elimination of

the devices from the original user-defined topology. The

passive network is then analyzed in the usual way, and a

call to a special subroutine performing the steps of the

algorithm is generated. Thus, the results of the noise analy-

sis become available to the user together with conventional

electrical information (e.g., the scattering matrix) in a

completely transparent way, no matter what the circuit

topology. When a noise analysis is not required, the special

sections of the program are bypassed, and only the stan-

dard analysis is carried out. An important point is that the

same subroutines can be used in both cases to perform the
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Equivalent noise resistance of a distributed amplifier [4]. The
three solid curves are associated with different values of R~.

interconnections of the circuit components, so that only

minor changes have to be made in an existing program in

order to implement the noise calculations.

When using the SGM, the CPU time required for a full

analysis (including noise) is larger than for a conventional

one, due to the nonoptimum sequence of interconnections,

leading to the inversion of a relatively large-order matrix

(16). The time penalty is directly dependent on the number

of noisy devices contained in the circuit. As an example,

for a two-port network including three devices (which

means an eight-port passive network) this penalty is about

85 percent.

As a typical application, we carried out a full noise

analysis of the three-stage distributed amplifier described

by Niclas et al. [5], [9]. Based on the data reported in [5]

and [9], the noise correlation matrix was computed from

(19) throughout the band of interest. The four spot noise

parameters and the noise figure for a 50-S? source imped-

ance were then derived by means of (8), (9), and (10).

Making use of the first term in square brackets on the

right-hand side of (19) and again of (10), we also computed

the contribution F,d to the amplifier noise figure due to the

passive network alone (i.e., in the case of noiseless FET’s).

All calculations were performed in the cases of lossless

microstrip lines (as in [5]) and for two different values of

the microstrip skin resistance at 10 GHz, namely R~ = 0.1

L? and R~ = 0.2 L?. Microstrip losses were evaluated by the

formulas given in [10].
The numerical results are presented in Figs. 5–9, where a

comparison with the calculations by Niclas and Tucker [5]

is also provided. For R~ = O, the two sets of curves closely

match, with minor discrepancies that can probably be

ascribed to the use of slightly different microstrip models.

The remaining curves show the effects of microstrip losses

on the noise performance of the amplifier. Such effects are

most significant on the minimum noise figure F&; the

remaining noise parameters are almost left unchanged.

Note that a typical value of R~ at 10 GHz would be

around 0.05 fl, corresponding to an attenuation constant
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of about 0.1 dB/cm for the 50-fl line on the quartz

substrate used by Niclas et al. [9]. Relatively large values of

R~ were used here to emphasize the applicability of our

algorithm to the lossy as well as to the loss-free rnicrostrip

cases. In view of the above, the results reported in Figs.
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Fig. 9. Noise figure of a distributed amplifier [4] with noiseless Ff3T’s.
(a) R~ = O. (b) Rs. = 0.10. (c) Rx= 0.2 fl.

5–10 clearly support the statement [5] that microstrip

losses give a negligible contribution to the amplifier noise

figure in the present case. This might not be true, however,

for a monolithic GaAs amplifier built (for example) on a

150-pm substrate, for which R~ = 0.05 would lead to an

attenuation constant of about 0.39 dB/cm for the 50-!J

microstrip at 10 GHz (according to [10]).
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